MAT B44 Integral Curve Examples

Jordan Bell
Department of Mathematics, University of Toronto

See integralcurvesnb.pdf

The point of these exercises is to match an ODE with an integral curve plot. Usually we work by exclusion: we check that some ODE/plots are not pairs until there is only one possibility left. I am going to explain for each of the plots the information I want you to be able to extract from the plot.

Plot 1 The easiest information to extract from the plot is (i) where solutions have vertical tangents and (ii) where solutions have horizontal tangents. Vertical tangents correspond to $y'(t) = \infty$ or $y'(t) = -\infty$, and horizontal tangents correspond to $y'(t) = 0$. From the plot, we get that for any t_0, a solution through the point $(t_0, 1)$ satisfies $y'(t_0) = \pm\infty$. It is not as obvious but a second piece of information is that the curves are horizontal at $t = 0$. That is, $y'(0) = 0$.

(remember each of the curves is a separate solution, and we are saying that all the solutions have this property.)

From this information we cannot reconstruct $y' = \frac{t^2}{1-y^2}$. For example, $y' = \frac{t}{1-y^2}$ is also consistent with the above information.

Plot 2 There are several points where integral curves have horizontal tangents, which corresponds to $y'(t) = 0$. For example, the solution through approximately $(-3, 6)$ has a horizontal tangent at this point.

Plot 3 Horizontal tangent at $y = 0$ and vertical tangent at $t = -1$. That is, if y is the solution through $(t_0, 0)$ then $y'(t_0) = 0$, and also $y'(-1) = \pm\infty$.

Plot 4 Curves are nearly horizontal when y is large, at least when t is small.

Plot 5 It is not clear where the curves have horizontal tangents. One vertical tangent we can notice is the curve that passes near to $(-3, -6)$. That is, for this solution we have $y'(-3) = 0$.

ODE 1

\[y' = \frac{t^2}{1-y^2} \]

ODE 2

\[y' = t^2 - y. \]

ODE 3

\[y' = \frac{y^2}{1+t^3}. \]

ODE 4

\[y' = \frac{4t-t^3}{4+y^3}. \]
ODE 5

\[y' = \frac{4y - 3t}{2t - y} \]

Plot 1: We can exclude ODE 2 because a solution of ODE 2 never has \(y' = \pm \infty \). Plot 1 has vertical tangents when \(y = 1 \), for any \(t \), while ODE 3 has vertical tangents when \(t = -1 \), so we can exclude ODE 3. ODE 4 has vertical tangents when \(4 + y^3 = 0 \), whereas the only vertical tangents for Plot 1 are when \(y = 1 \), so we can exclude ODE 4. Finally, ODE 5 has a vertical tangent at \((-3, -6)\), whereas Plot 1 does not, so we can exclude ODE 5. Therefore we match ODE 1 and Plot 1.